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1. Introduction

The studies of D-branes and M-branes have certainly been crucial in recent developments

of string theory and M-theory. The classical dynamics of a brane is described by its

world-volume theory, which is reparametrization invariant. At the same time, they are the

sources of various gauge fields such as RR-fields. Thus the dynamics of their world-volumes

is largely affected by the presence of the various fluxes in string theory and M-theory.

In particular, consider a D2-D0 bound state in type IIA string with the RR-3 form flux

in the world-volume direction. Then it is well-known that the stable world-volume is given
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by a two sphere, called the fuzzy sphere (or dielectric D2-brane) [1]. This configuration can

be regarded as a system of multiple D0-branes, which are expanded into a sphere due to the

non-abelian RR coupling [1]. In the beginning of this paper, we will explicitly construct a

supersymmetric fuzzy sphere in the fully back-reacted IIA background of AdS4×CP 3 [2, 3].

This predicts a new class of supersymmetric states in the dual ABJM theory [3].

We may naturally think a fuzzy sphere as a rigid body in the low energy limit since

it is composed of infinitesimally small and massive constituents (i.e. D0-branes). This

suggests, for example, that we can give it an angular momentum. Actually, by colliding

closed strings with the fuzzy sphere, we can excite the angular momentum. However,

naively this contradicts with the D2-brane description because the world-volume theory is

reparametrization invariant and there seems no room for adding any angular momenta.

One of the main purposes of this paper is to resolve this puzzle completely. We argue

that the spinning fuzzy ‘sphere’ is realized by putting a non-vanishing electric flux so that it

produces the non-zero Poynting vector together with the magnetic flux due to the D0-brane

charge (see figure 1). Even though this is similar to the mechanism of the supertube [4], our

case is far more non-trivial since the Gauss law on the sphere seems to contradict the pres-

ence of the electric flux. Indeed, as we will show explicitly, the topology of the world-volume

is no longer a sphere but it should be changed into a torus in order to realize a stationary

spinning configuration. This topology change is naturally explained by interpreting the

sources of electric flux as the fundamental strings attached on the North and South Poles

of the two sphere as explained in figure 1. When its angular momentum in the AdS4 be-

comes large, the fuzzy torus degenerates into a ring-like object (‘fuzzy ring’). Since some

of such fuzzy rings become BPS states, they may resemble supersymmetric black rings [5].

Another D-brane configuration, which is analogous to the previous example, will be

the giant gravitons [6 – 9]. Here we especially consider1 dual giant gravitons in AdS4 ×S7.

It is a spherical M2-brane with angular momenta (or R-charges in the dual CFT3) in the

S7 direction. As we will show in this paper, its reduction to the type IIA string via the

orbifolding procedure introduced in [3], precisely leads to the mentioned spherical dielectric

D2-brane in AdS4 × CP 3.

Moreover, we will construct a spinning dual giant gravitons in M-theory by solving the

BPS equations explicitly. By reducing them to type IIA via the orbifold, we will obtain

the exact solution of the spinning fuzzy D2-brane. We will show that the world-volumes

of a spinning giant graviton becomes2 a sphere (see figure 2) with two spikes attached or

a torus (see figure 3).

This paper is organized as follows: In section two, we briefly review the M-theory on

AdS4 × S7 and type IIA string on AdS4 ×CP 3. In section three, we construct a dielectric

D2-brane solution in AdS4 × CP 3 and show that it can be obtained from the reduction

1As usual, a dual giant graviton means a giant graviton whose 2 + 1 dimensional world-volume expands

in the AdS4 direction [8].
2The spike and torus configurations of D-branes or M-branes have been already noticed by studying the

giant gravitons in the pp-wave backgrounds in [10 – 14]. Also we would like to refer to [15 – 18] for excellent

constructions of generic dual giant gravitons in AdS5×S5 based on the approach [19] using the holomorphic

surface.
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Figure 1: If we collides closed strings with a fuzzy sphere (or a dielectric D2-brane), it should

begin spinning. To give a non-vanishing angular momentum, we need fundamental strings which

connect between the North Pole and the South Pole. By regarding the total system as a bound

state of a D2-brane, D0-branes and F-strings, its world-volume becomes a torus. In this paper we

will present an exact profile of this configuration by solving the BPS equation.

of a dual giant graviton in AdS4 × S7 by the orbifolding. In section four, we construct

spinning dual giant gravitons in AdS4×S7 by solving the BPS equations. In section five, we

obtain the spinning dielectric D2-brane solution in the AdS4 ×CP 3 by taking the orbifold

reduction of the spinning giant graviton solutions. In section 6, we construct dual giant

gravitons in type IIA string on AdS4 × CP 3. In section 7, we summarize the conclusion.

2. Review of M-theory on AdS4 × S7/Zk and IIA on AdS4 × CP 3

The near horizon metric of N ′(= Nk) M2-branes becomes AdS4 × S7

ds2 =
R2

4

[

ds2AdS4
+ 4dΩ2

7

]

, R = lp(2
5π2N ′)

1

6 , (2.1)

ds2AdS4
= −

(

1 + r2
)

dt2 +
dr2

1 + r2
+ r2(dθ2 + sin2 θdϕ2),

with 4-form flux

F (4) = −3R3

8
r2 sin θdt ∧ dr ∧ dθ ∧ dϕ, (2.2)

where Ω7 represents the coordinate of S7 with unit radius:

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (2.3)

We can express

zi = µie
iξi , (i = 1, 2, 3, 4) (2.4)
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where (µ1, µ2, µ3, µ4) = (sinα, cosα sinβ, cosα cosβ sin γ, cosα cosβ cos γ). We choose the

coordinate (x0, x1, . . . , x10) as follows

x0 = t, x1 = r, x2 = θ, x3 = ϕ, x4 = α,

x5 = β, x6 = γ, x7 = ξ1, x8 = ξ2, x9 = ξ3, x10 = ξ4. (2.5)

Our convention of Γ matrices is such that γµ are normalized such that {γµ, γν} = 2ηµν ; on

the other hand, Γµ are not normalized i.e. {Γµ,Γν} = 2gµν . Then the Killing spinors ǫ on

AdS4 × S7 are found to be (see appendix A)

ǫ = e
α
2
γ̂γ4e

β
2
γ̂γ5e

γ
2
γ̂γ6e

ξ1
2
γ47e

ξ2
2
γ58e

ξ3
2
γ69e

ξ4
2
γ̂γ10e−

ρ
2
γ1γ̂e−

t
2
γ0γ̂e

θ
2
γ12e

ϕ
2
γ23ǫ0 ≡ Mǫ0, (2.6)

where we defined γ̂ ≡ γ0123 and sinh ρ = r; ǫ0 is a constant 11D spinor which satisfies

γ012345678910ǫ0 = ǫ0. It is easy to check {γ̂, γa} = 0, (a = 0, 1, 2, 3). As we can choose a

constant spinor ǫ0 arbitrary, there are 32 Killing spinors in AdS4 × S7 as is well-known.

Let us take the Zk orbifold of S7 and reduce the M-theory background AdS4 × S7/Zk
to the type IIA string background AdS4 ×CP 3 following [3]. The Zk quotient acts on the

complex coordinates zi (i = 1, 2, 3, 4) as

zi ∼ ei
2π
k zi, (2.7)

thus ξi is identified as ξi ∼ ξi + 2π
k under the orbifold action. If we define γ47ǫ0 = is1ǫ0,

γ58ǫ0 = is2ǫ0 and γ69ǫ0 = is3ǫ0, the spinors which survive the Zk orbifold projection are

the ones (s1, s2, s3) = (+,+,−), (+,−,+), (−,+,+), (+,−,−), (−,+,−), (−,−,+). The

ones with (+,+,+) and (−,−,−) are projected out. Therefore 24 out of 32 Killing spinors

are survived in the AdS4 × S7/Zk with k > 2 as claimed in [3].

To see the reduction of our M-theory background to the type IIA string explicitly, it

is easier to parameterize S7 as follows3 (see [20]) instead of (2.4)

z1 = cos ζ cos
θ1
2
ei

χ1+ϕ1
2 , z2 = cos ζ sin

θ1
2
ei

χ1−ϕ1
2 ,

z3 = sin ζ cos
θ2
2
ei

χ2+ϕ2
2 , z4 = sin ζ sin

θ2
2
ei

χ2−ϕ2
2 , (2.8)

where the angular valuables run the values 0 ≤ ζ < π
2 , 0 ≤ χi < 4π, 0 ≤ ϕi ≤ 2π and

0 ≤ θi < π.

Define new coordinates

χ1 = 2y + ψ, χ2 = 2y − ψ. (2.9)

The Zk orbifold action is now given by y ∼ y + 2π
k . Then

ds2S7 = ds2CP 3 + (dy +A)2, (2.10)

3In this paper, however, we will always work with the coordinate choice (2.5) and (2.4) except in this

section and section 6.
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where A is one form such that dA = 2J (J is the Kahler form of CP 3). By comparing

the above result with the conventional reduction formula, we obtain type IIA background

AdS4 × CP 3 with 1-form and 3-form RR potentials as follows (setting α′ = 1) [3, 2].

ds2 = R̃2(ds2AdS4
+ 4ds2CP 3),

ds2CP 3 = dζ2 + cos ζ2 sin2 ζ

(

dψ +
cos θ1

2
dϕ1 −

cos θ2
2

dϕ2

)2

+
1

4
cos2 ζ

(

dθ2
1 + sin2 θ1dϕ

2
1

)

+
1

4
sin2 ζ(dθ2

2 + sin2 θ2dϕ
2
2), (2.11)

C(1) =
k

2

[

(cos2 ζ − sin2 ζ)dψ + cos2 ζ cos θ1dϕ1 + sin2 ζ cos θ2dϕ2

]

,

C(3) = −kR̃
2

2
r3 sin θdt ∧ dθ ∧ dϕ,

e2φ =
4R̃2

k2
, R̃2 =

R3

4k
= π

√

2N

k
.

Again, this background preserves 24 supersymmetries and its holographic dual is recently

argued to be the three dimensional N = 6 Chern-Simons theory (ABJM theory) [3].

3. Fuzzy sphere and dual giant gravitons

3.1 Dual giant gravitons in M-theory

Consider a dual giant graviton expanding spherically in AdS4 and rotating in the y direction

of S7 given in (2.10). We take the world-volume coordinates of the M2-brane as

σ0 ≡ τ = t, σ1 = θ, σ2 = ϕ, (3.1)

and assume the transverse coordinates except y does not depend on the world-volume

coordinates, and y depends on t as

y = y(t). (3.2)

Remember that this coordinate y, defined in (2.10), is the diagonal part of ξi (i = 1, 2, 3, 4)

in (2.4) and we fix both the non-diagonal part of ξi and the values of (α, β, γ) to be constant.

The action for this ansatz is given by the DBI action and the Chern-Simons term

S = −T2

∫

d3σ
√

− det(P [G]ij) − T2

∫

P [C(3)],

= −πR
3T2

2

∫

dt
[

r2
√

1 + r2 − 4ẏ2 − r3
]

, (3.3)

where i, j and P [. . . ] denote the world-volume coordinates and the pull-back on the world-

volume respectively. The tension is given by T2 = 1
(2π)2

in our convention. The conserved

momentum conjugate to y becomes

Py = 2πR3T2
r2ẏ

√

1 + r2 − 4ẏ2
, (3.4)
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and the Hamiltonian becomes using Py

H = Py ẏ − L

=
πR3T2

2





√

1 + r2

√

r4 +
P 2
y

(πR3T2)2
− r3



 . (3.5)

Thus we obtain the solution satisfying ∂H/∂r = 0 as

r = 0,

√

P 2
y

(πR3T2)2
. (3.6)

The former is a graviton and the latter is a giant graviton solution. Substituting these

into (3.4), we can determine the dependence on t of y as y = t
2 or equally,

ξ1 = ξ2 = ξ3 = ξ4 =
t

2
. (3.7)

Then the graviton and giant graviton rotate with the velocity of light and have equal

energies4

E =
Py
2

=
1

2
(J1 + J2 + J3 + J4), (3.8)

where Ji = Pξi are the momenta in the ξi direction.

For example, if only one of Ji is non-vanishing, this relation (3.8) shows the giant

graviton is 1
2 BPS state [7] (for the properties of the supersymmetric states in the dual

CFT3 see e.g. [21]). In the same way we can have 1/4 and 1/8 BPS dual giants depending

on the values of (α, β, γ) as we will show in section 4. The result is summarized in table 1.

3.2 Fuzzy sphere in AdS4

Now we would like to show that dielectric D2-branes [1] (or fuzzy spheres) can be realized

in the AdS4 × CP 3 background (2.11). It expands spherically in AdS4 and we take the

world-volume coordinates of D2-brane as

σ0 ≡ τ = t, σ1 = θ, σ2 = ϕ, (3.9)

and introduce the U(1) field strength, describing the M D0-brane charge

F =
M

2
sin θdθ ∧ dϕ. (3.10)

Assuming the solution does not depend on t, the action for D2-brane becomes

S = −T2

∫

d3σe−φ
√

− det(P [G]ij + 2πFij) − T2

∫

P [C(3)]

= −2πT2 kR
2

∫

dt

[

√

r2 + 1

√

r4 +
π2M2

R4
− r3

]

. (3.11)

4The factor 1/2 of right hand side comes from the difference of the radius between AdS4 and S7;

2RAdS4
= RS7 = R.
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Since this Lagrangian consists of only potential term, the solution is easily obtained by

minimizing the Hamiltonian H leading to

r =
πM

R2
, H = 2π2T2 kM. (3.12)

In our convention we have T2 = 1
(2π)2

and thus we find the energy of the fuzzy sphere

E =
kM

2
,

(

r = M

√

k

2N

)

. (3.13)

The above fuzzy sphere configurations composed of the D2-D0 bound states descend

from the dual giant M2-branes in AdS4 × S7/Zk, which is rotating in the ∂y direction.

This is easily seen by taking the Zk orbifold y → y + 2π
k of the dual giant in section 3.1.

Indeed, the sum of the R-charges is quantized as J1 +J2 +J3 +J4 ∈ kZ due to the orbifold

projection, leading to the agreement between (3.13) and (3.8).

The fuzzy sphere D2-branes are parameterized by its position in CP 3 in the IIA de-

scription. Some of them preserve a half supersymmetries (12 SUSYs) when only one of

Ji (i = 1, 2, 3, 4) is non-zero as summarized in the k > 2 case of the table 1. Therefore,

it is very interesting to consider its dual operator in the ABJM theory (for a recent study

of operators in ABJM theory dual to giant gravitons refer to [22]) . When the number of

D0-branes is M , the energy or conformal dimension is given by E = kM
2 and the baryon

charge is kM . Thus it should be made of k scalar fields of the matter fields (A1, A2, B̄1, B̄2).

In order to have a gauge invariant operator we need a contribution from the flux sector or

the Wilson line in the sense of [3]. It will be an interesting future direction to pursuit the

dual CFT operator in detail.

4. Spinning dual giant gravitons in M-theory

As we have shown in the previous section the dual giant gravitons in M-theory on AdS4 ×
S7/Zk are equivalent to the dielectric D2-branes (fuzzy spheres) in type IIA string on

AdS4 × CP 3. Partly motivated by the problem raised in the introduction summarized in

figure 1, we would like to move on to a more non-trivial example by introducing a non-

vanishing spin in the AdS4 direction. Another motivation for this is to understand the 1
16

BPS states in AdS4 × S7. In this section we will analyze the M-theory description of the

spinning dual giant gravitons and construct exact solutions by solving the BPS equation.

In the next section we reduce the solution to the fuzzy torus in type IIA string.

4.1 Spinning giant graviton ansatz

We assume the following ansatz5 of the spinning dual giant graviton in AdS4 × S7/Zk

r = r(θ), y = wϕ+ ωt, (4.1)

5The unspecified parts are the same as the non-spinning dual giant. If we write all components explicitly

in the coordinate system (2.5) , then we have ξ1 = ξ2 = ξ3 = ξ4 = wϕ + ωt and (α, β, γ) are fixed to be

constant.
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where w ∈ Z
k is the winding number equivalent to fundamental string charge (remember

that y is compactified as y ∼ y + 2π
k ), while non-zero constant ω leads to the D0-brane

charge after the Kaluza-Klein reduction.

Then the M2-brane world-volume theory becomes

S = −T2

∫

dtdθdϕL, (4.2)

where

8

R3
L =

√

(

r′2

1 + r2
+ r2

)

(

r2(1 + r2) sin2 θ + 4w2(1 + r2) − 4ω2r2 sin2 θ
)

− r3 sin θ. (4.3)

4.2 Supersymmetry condition (generic case)

We would like to find M2-brane configurations that preserve some supersymmetries. The

projection operator of supersymmetries in the presence of M2-branes is given by

Γ =
1

3!
√

− detP [G]
ǫijk∂iX

µ∂jX
ν∂kX

ρΓµνρ, (4.4)

which always satisfies Γ2 = 1. We will analyze the supersymmetry conditions closely

following the general strategy in [9], where non-spinning dual giants in AdS5×S5 has been

studied. In this subsection we assume that the M2-brane is situated at a generic point of

(α, β, γ) in the coordinate system (2.5). In section 4.5, we will discuss the issue that the

number of preserved supersymmetries is enhanced at particular values of (α, β, γ).

To examine the supersymmetry condition, let us notice Γy = R
∑4

i=1 µiγ6+i. Instead

we will write Γy = Rγy for simplicity, but notice that γy depends on the coordinate α, β

and γ. In the end we find (we define r ≡ sinh ρ)

Γ =
1

3!
√

− detP [G]
(Γ0 + ωΓy)(Γ2 + r′Γ1)(Γ3 + wΓy) + (perm)

=
R3

8 · 3!
√

− detP [G]

(

√

1+r2 γ0+2ωγy

)

(

rγ2+
r′√

1+r2
γ1

)

(r sin θγ3+2wγy)+(perm)

=
R3

8 ·
√

− detP [G]

[

√

1 + r2r2 sin θγ023 + 2rw
√

1 + r2 γ02y + r′r sin θ γ013 + 2r′wγ01y

+ 2ωr2 sin θ γy23 +
2ωr′r sin θ√

1 + r2
γy13

]

=
R3

8·
√

− detP [g]
(ρ′γ1+sinh ργ2)

[

2(ω sinh ρ sin θγ3−w cosh ργ0)γy−sinh ρ cosh ρ sin θγ03

]

,

(4.5)

and

√

− detP [G]=
R3

8

√

(ρ′2+sinh2 ρ)(sinh2 ρ cosh2 ρ sin2 θ+4w2 cosh2 ρ−4ω2 sinh2 ρ sin2 θ).

(4.6)
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The M2-brane preserves a fraction of supersymmetries specified by

(Γ + 1)ǫ = 0, (4.7)

out of the total 24 (or 32) Killing spinors when k = 1, 2 (or when k > 2). This requirement

is highly non-trivial since both Γ and ǫ depend on the coordinates. Multiplying (ρ′γ1 +

sinh ργ2) from the left, (4.7) becomes
[√
s
{

sinh ρ sin θγ3(2ωγy + cosh ργ0) − 2w cosh ργ0γy
}

+ ρ′γ1 + sinh ργ2

]

Mǫ0 = 0,

√
s ≡

√

ρ′2 + sinh2 ρ

sinh2 ρ cosh2 ρ sin2 θ + 4w2 cosh2 ρ− 4ω2 sinh2 ρ sin2 θ
. (4.8)

To find the configuration preserving the supersymmetry, we suppose the following con-

ditions so that the above projection does not depend on α, β, γ when we move M to the left

(γ47 − γ10γ̂)ǫ0 = 0, (γ58 − γ10γ̂)ǫ0 = 0,

(γ69 − γ10γ̂)ǫ0 = 0. (4.9)

These three conditions are not independent because of the relation γ012345678910ǫ0 = ǫ0 and

the two of them become independent. Under this conditions, we can move the matrix M
to the left using the identities (B.1) given in the appendix

M
[

etγ0 γ̂ sinh ρ
{

cosh ρ
√
s
{

2w cos θγ2310+sin θ(sinϕγ2−cosϕγ3)γ10(2ω−γ010−2wγ1)
}

−ρ′γ̂
}

+
{

(ρ′ cosh ρ cos θ − sinh ρ sin θ)γ1 − 2w cosh2 ρ
√
sγ010 − 2ω sinh2 ρ sin2 θ

√
sγ0110

}

+(cosϕγ2+sinϕγ3)
{

ρ′ cosh ρ sin θ+sinhρ cos θ−2ω sinh2 ρ sin θ cos θ
√
sγ010

}

]

ǫ0 = 0

(4.10)

To drop the time dependence in the first line, the following two conditions are needed

(2ω − γ010 − 2wγ1)ǫ0 = 0,

γ023

(

−2w cosh ρ cos θ
√
sγ010 + ρ′γ1

)

ǫ0 = 0. (4.11)

Since γ1 and γ010 commute with each other, we can simultaneously diagonalize these ma-

trices. Denoting the eigenvalues of these matrices by η1(= ±1) and η2(= ±1) respectively,

the above equations are solved by

2ω = η2(2η1η2w + 1),

ρ′ = −2η1η2w sinh ρ cosh ρ cos θ

(sinh2 ρ− 2η1η2w) sin θ
(η1η2w > 0, sinh2 ρ < 2|w|) (4.12)

=
2η1η2w sinh ρ cosh ρ cos θ

(sinh2 ρ− 2η1η2w) sin θ
(otherwise) (4.13)

Moreover, we can check whether the second and third line of (4.10) vanish or not, and

we eventually find that only the latter case i.e. (4.13) satisfies it. The conditions (4.9)

and (4.11) for the Killing spinor tell that this solution is (at least) 1
16 BPS.

The solution (4.13) is classified into the following two types:
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• For η1η2w < 0, ρ decreases monotonically from ρ(0) = ∞ to ρ
(

π
2

)

with θ varying

from 0 to π
2 .

• For η1η2w > 0 and sinh2 ρ ≥ 2|w|, ρ increases from ρ(θ0) to ρ(π2 ) with θ varying from

θ0 to π
2 , satisfying sinh2 ρ(θ0) = 2η1η2w.

We can extend these solutions beyond θ = π
2 in a symmetric way under the Z2 action

θ → π−θ. In the first case, we will have a sphere with two spikes attached (we will analyze

this in detail later, see figure 2). In the second case, the M2-brane world-volume naively

ends at θ = θ0. This is due to the assumption that r is single-valued function of θ in

deriving (4.7). Actually, the correct interpretation of the second case turns out to be a

toroidal world-volume (as we will examine in detail later, see figure 3), where r becomes

double-valued. That is to say, the above description covers only a half part of the whole

configuration. If we choose the appropriate world-volume coordinate χ corresponding to

the one cycle of the torus, instead of θ, the relation between the κ-projection gamma

matrices (4.4) becomes

Γ(t, χ, ϕ) =
∂θ/∂χ

|∂θ/∂χ|Γ(t, θ, ϕ). (4.14)

Therefore, in second case, the sign flips at θ = θ0 and we must use

(−Γ + 1)ǫ = 0 (4.15)

instead of (4.7) to extend the above configuration. We can solve this equation similarly

and obtain the supersymmetric solution which connects the above solution as

ρ′ =
2η1η2w sinh ρ cosh ρ cos θ

(sinh2 ρ− 2η1η2w) sin θ
(η1η2w > 0, sinh2 ρ ≤ 2|w|). (4.16)

In summary, we find that a spinning dual M2-giant in AdS4 × S7 (or AdS4 × S7/Z2)

becomes at least 1
16 BPS state if the following BPS equation is satisfied

2ω = η2(2η1η2w + 1),

ρ′ =
2η1η2w sinh ρ cosh ρ cos θ

(sinh2 ρ− 2η1η2w) sin θ
. (4.17)

We can also rewrite this BPS equation in terms of the coordinate r

dr

dθ
= 2η1η2w

r(1 + r2)

r2 − 2η1η2w
· cos θ

sin θ
. (4.18)

As we will explain in the next subsection, it becomes 1
4 or 1

8 BPS states if we choose

specific values of α, β and γ. We will leave the details of the analysis of supersymmetry

enhancement to the section 4.5.

A spinning dual M2-giant in AdS4 × S7/Zk (k > 2) can be treated similarly by just

taking the orbifold y ∼ y+ 2π
k . This orbifold projection kills some of the supersymmetries.

In fact, in the generic case, no supersymmetries will be left after the orbifolding. However,

as we will explain in section 4.5, for specific values of α, β and γ, there will be remaining

supersymmetries, leading to 1
4 or 1

12 BPS states in AdS4 × S7/Zk.
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4.3 BPS equation from Bogomolnyi bound

In this section, we derive the supersymmetric equation (4.17) or (4.18) from another ap-

proach of the Bogomolnyi bound. We can show the DBI part of the action is rewritten as

follows

8

R3

√

−P [G] =

√

(

r′2

1 + r2
+ r2

)

(

r2(1 + r2) sin2 θ + 4w2(1 + r2) − 4ω2r2 sin2 θ
)

=

√

(

2w
d(r cos θ)

dθ
+ηr3 sin θ

)2

+
(r2+2w)2 sin2 θ

1 + r2

(

dr

dθ
− 2ηwr(1+r2) cos θ

(r2 − 2ηw) sin θ

)2

,

(4.19)

imposing the relation6

ω = ±
(

w +
η

2

)

, (4.20)

where we can allow both signs η = ±1, corresponding to the freedom η1η2 = ±1 in (4.18).

If the BPS equation (4.18) or equally

dr

dθ
= 2ηw

r(1 + r2)

r2 − 2ηw
· cos θ

sin θ
, (4.21)

is satisfied (setting η = η1η2), then the total Lagrangian

8

R3
L =

8

R3

√

−P [G] ± r3 sin θ = ∓2ηw
d(r cos θ)

dθ
, (4.22)

successfully becomes a total derivative as required from the ordinary Bogomolnyi bound

argument. At the same time, this guarantees that the solution to the BPS equation (4.21)

satisfied the equation of motion. Notice that the coefficient in front of r3 sin θ represents

whether we consider a M2-brane or an anti M2-brane. By plugging the explicit solutions,

we can check that in the Lagrangian (4.22), the r3 sin θ term from the square root always

cancels out the r3 sin θ term from the coupling to 3-form field. In this way, we rederived

the BPS equation (4.17) or (4.18) from the Bogomolnyi bound argument.

We would also like to compute energy and angular momenta. There are five different

angular momenta: Ji = Pξi (i = 1, 2, 3, 4) and S = Pϕ. In the AdS4/CFT3 viewpoint

Ji is the R-charge and S is the spin inside the AdS4. They are obtained by taking the

functional derivative as Pϕ = −T2

∫

dθdϕ∂L∂ϕ̇ and we find the linear relation

Ji =
µ2
i

w
S, (4.23)

where µi = (sinα, cosα sin β, cosα cos β sin γ, cosα cos β cos γ). If we define J =
∑4

i=1 Ji (=

Py), then we find the relation wJ = S.

6The over role ± sign is equal to η1.
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The energy is given by

E =

∫

dθdϕ

[

4
∑

i=1

Pξi ξ̇i − (−T2)L
]

=
η1

2
(2S + J1 + J2 + J3 + J4) + T2

∫

dθdϕL, (4.24)

where η = ±1 is the sign introduced in (4.13). Notice that this relation almost saturates

the BPS bound expected from the dual CFT3 since the final term
∫

dθdϕL is a total

derivative (4.22).

4.4 Analytical solutions to BPS equation

Now let us solve the BPS equation (4.21) and determine the shape of M2-brane. We can

analytically solve the differential equation and finally we get

sin θ = A · r−1(1 + r2)
1

2
+ 1

4ηw , (4.25)

where A is a constant. If we instead employ the coordinate ρ we obtain

sin θ = A · (cosh ρ)
1+ 1

2ηw

sinh ρ
. (4.26)

Since the solution is Z2 symmetric r(θ) = r(π − θ), we have only to discuss the

behavior of the function r(θ) for 0 ≤ θ ≤ π
2 . It is easy to see that when ηw < 0 there are

only one value of r which satisfies (4.25), while when ηw > 0 there are two such solutions.

Accordingly, we have two different types of the M2-brane shape depending on the sign of ηw.

4.4.1 Case 1: ηw < 0 (giant spike)

In this case, r(θ) is monotonically decreasing function when 0 ≤ θ ≤ π
2 . It satisfies

r(0) = ∞ and r(π2 ) = r0, where the constant r0 > 0 is related to the integration constant A

via A = r0(1+ r20)
− 1

2
+ 1

4|w| . The shape of this M2-brane world-volume is plotted in figure 2.

It looks like a sphere with two spikes attached. The spikes are actually a cylinder with

radius R
k winding wk times in the y direction. Thus it can be regarded as a bound state

of a (non-spinning) dual M2 giant and wk tubular M2 branes.7

Its energy is calculated from (4.24) as follows (we choose η1 = +1)

E − S − 1

2
(J1 + J2 + J3 + J4) =

R3

8
T2

∫

dθdϕ 2w[r cos θ]′

= πwR3T2(r∞ − r0), (4.27)

where r∞ presents the infinitely large value of r at θ = 0 and θ = π. Indeed the infinitely

large contribution of right-hand side precisely coincides with the infinitely large mass of

kw M2-branes which wrap on the circle ∂y and which extend in the r direction. We can

explicitly express J =
∑4

i=1 Ji as follows

J =
R3

2
ωT2

∫

dθdϕr2 sin2 θ

√

r′2

1+r2 + r2

r2 sin2 θ(1 + r2) − 4ω2r2 sin2 θ + 4w2(1 + r2)

= 2πR3ωT2

∫ ∞

r0

dr
r2 sin2 θ

2w(1 + r2) cos θ
. (4.28)

7This tubular part locally looks similar to the M-theory lift of the supertube discussed in [23].
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Figure 2: The giant-spike solution described in the three dimensional space (r, θ, ϕ) (we assumed

|w| = 10 and A = 3). This corresponds to the sign ηw < 0. We multiplied the factor 10 with the

horizontal coordinates.

4.4.2 Case 2: ηw > 0 (giant torus)

In this case, the values of r in (4.25) is restricted to a certain range r− ≤ r ≤ r+ because

the function B(r) = r−1(1 + r2)
1

2
+ 1

4|w| takes its minimum at r =
√

2w and satisfies B(0) =

B(∞) = ∞. The values of r± are given by the two solutions to Ar−1
0 (1 + r20)

1

2
+ 1

4|w| = 1. It

is clear that we need to require A < 1/B(
√

2w) in order to have any solution.

The values of θ is restricted to the range θ0 ≤ θ ≤ π − θ0 such that r(θ0) =
√

2w. For

a given θ there are two values of r which satisfy (4.25). Thus we can conclude that the

world-volume of this M2-brane is topologically a torus. An explicit shape of this M2-brane

world-volume is plotted in figure 3.

In this case, the total derivative term in (4.24) just vanishes since the world-volume

has no boundary. Thus we obtain the standard BPS formula (choosing η1 = +1)

E = S +
1

2
(J1 + J2 + J3 + J4) = ωJ, (4.29)

and

J = 2πR3ωT2

∫ r+

r−

dr
r2 sin2 θ

2w(1 + r2) cos θ
. (4.30)

It is interesting to note that if we fix J and take w to be large, then we can realize a

ring-like object.

4.5 Enhanced supersymmetries

In the previous subsection, we showed that the solution which satisfies (4.18) preserves at

least two (i.e. 1
16 BPS) of the total thirty-two supersymmetries in AdS4 × S7. Though for
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Figure 3: The giant-torus solution corresponding to the sign ηw > 0 (we assumed |w| = 10 and

A = 0.8).

general values of α, β and γ, the spinning dual giant is a 1
16 BPS state, we can see that it

enhances to 1
4 or 1

8 BPS states for specific values of α, β and γ. In this subsection we will

examine these details of supersymmetries in both AdS4×S7 and its orbifold AdS4×S7/Zk.

The result is summarized in the table 1 (non-spinning case) and table 2 (spinning case).

It is convenient to define the ±1 eigenvalues η1, η2, s1, s2, s3 and s4 of the commuting

matrices γ1, γ010, γ47, γ58, γ69 and γ̂γ10 for a given spinor ǫ0 as we have already did so in

previous sections

(γ1 − η1)ǫ0 = 0, (γ010 − η2)ǫ0 = 0,

(γ47 − is1)ǫ0 = 0, (γ58 − is2)ǫ0 = 0,

(γ69 − is3)ǫ0 = 0, (γ̂γ10 − is4)ǫ0 = 0. (4.31)

Since the 11D spinor ǫ0 is chiral, we impose γ012345678910ǫ0 = ǫ0. This leads to the relation

s1s2s3s4 = 1.

4.5.1 Enhanced supersymmetries in AdS4 × S7 (or S7/Z2)

For example, if we set α = β = γ = 0 (called case (a)), we do not need to require any of the

constraints in (4.9) because γy = γ10. Thus in this case, it becomes 1
4 BPS because we only

need to fix the signs of η1 and η2. In a similar way, when two out of α, β and γ are vanishing

(called case (b)), we get a 1
8 BPS state by requiring a further constraint s1 = s4, s2 = s4 or

s3 = s4. For other generic values (case (c)), it becomes 1
16 BPS as we already mentioned.

Also notice that non-spinning case w = 0 is special. In this case we do not need to spec-

ify the value of η1 as is clear from (4.11). Thus the number of preserved supersymmetries

becomes doubled as summarized in table 1.

4.5.2 Enhanced supersymmetries in AdS4 × S7/Zk (k > 2)

The Zk orbifold action on the spinor ǫ0 produces the phase factor

ǫ0 → e
πi
k

(s1+s2+s3+s4)ǫ0. (4.32)
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k Total SUSY Case (a) Case (b) Case (c)

k = 1, 2 32 16 8 4

k > 2 24 12 4 0

Table 1: The number of supersymmetries of dual non-spinning giant gravitons in AdS4 × S7/Zk.

Its world-volume looks like a sphere as usual. The result of dielectric D2-branes (or fuzzy sphere) in

type IIA string on AdS4×CP 3 corresponds to the k > 2 case. The case (a) is defined by α = β = γ.

The case (b) is by α = β, β = γ or α = γ. The case (c) is all the other possibilities.

k Total SUSY Case (a) Case (b) Case (c)

k = 1, 2 32 8 4 2

k > 2 24 6 2 0

Table 2: The number of supersymmetries of dual spinning giant gravitons in AdS4 × S7/Zk. Its

world-volume looks like either a torus or sphere with two spikes. The result of spinning dielectric

D2-branes (or fuzzy torus) in type IIA string on AdS4 × CP 3 corresponds to the k > 2 case. The

cases (a), (b) and (c) are defined in the same way as in table 1.

Thus for the M-theory on AdS4 × S7/Zk with k > 2 (or IIA string on AdS4 ×CP 3), there

are 24 Killing spinors corresponding to the choice (+,+,−,−) and its permutations, which

satisfies the orbifold projection
∑4

i=1 si ≡ 0 (mod 2) as already mentioned.

The number of supersymmetries for spinning or non-spinning dual giants can be ana-

lyzed in the same way as in the previous k = 1, 2 case. It is again summarized in table 1

and table 2.

5. Fuzzy rings in AdS4

As we learned in section 3, we can reduce a spherical dual giant graviton of M2-brane

to a fuzzy sphere of a dielectric D2-brane in AdS4 × CP 3 by considering the orbifold

AdS4×S7/Zk. Thus it is intriguing to apply the same procedure to the spinning dual giant.

By construction, it is rotating both in the y and ϕ direction. The angular momentum

J = Py ≡ kM leads to M units of the D0-brane charge after the reduction to IIA string,

while the winding number w corresponds to the wk units of the F-string charge.8 Therefore,

the spinning dual giant constructed in the previous section will be reduced to a bound state

of a D2-brane, M D0-branes and wk F-strings. Since the F-strings and D0-branes generate

the electric and magnetic flux, the system has a non-vanishing Poynting vector which

produces non-vanishing angular momentum (or spin) in the ϕ direction. Indeed its value

is given by S = Pϕ = wkM . Notice that the quantization of the angular momentum is a

consequence of the charge quantization of the F-string and D0-brane. In this way, in order

to obtain a non-vanishing spin, the F-string charge is necessary.

8Remember that in the orbifold theory of AdS4 ×S7/Zk the winding number w is fractionally quantized

i.e. wk ∈ Z.
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One may notice that there are two different ways of attaching the F-string to the fuzzy

sphere:

(i) F-strings which are attached at north and south poles on the sphere and stretch

toward the infinity

(ii) F-strings which connects between the two poles. Indeed, the BPS equation in section

4 precisely leads to corresponding two solutions: giant spike and giant torus.

The profile of this dielectric D2-brane is again given by (4.25). The values of gauge

fluxes can be computed by rewriting9 the action of a D2-brane into that of a M2-brane [24,

25]

SDBI = −T2

∫

D2
d3x e−φ

√

− det(P [G(IIA)]ij + 2πFij)

= −T2

∫

D2
d3x

[

e−φ
√

− det(P [G(IIA)]ij + e2φaiaj) + πǫijkaiFjk

]

(5.1)

= −T2

∫

M2
d3x

√

− det(P [G(M)]ij + e
4

3
φ∂iỹ∂j ỹ),

where we defined ∂iỹ = ai in the final expression. The integration over the D2-brane

gauge field Ai requires the auxiliary vector field ai to be a total derivative. Notice

also that the metric in M-theory and the IIA string frame metric is related via ds2M =

e−
2

3
φds2IIA + e

4

3
φ(dỹ + C)2. We can check the equivalence of the first line and the second

line by integrating out ai explicitly.10

The relation between Fij and ∂iỹ is given by

e
4

3
φ
√

− detP [G(M)]
∂iỹ

√

1 + e
4

3
φ∂iỹ∂iỹ

= −πǫijkFjk, (5.3)

where the left-hand side should be computed by using the M-theory metric.

By plugging ỹ = ky = k(ωt+wφ) (4.1) to (5.3), we eventually obtain the electric and

magnetic field on the spinning dielectric D2-brane as follows11

Ftθ = −w
√

2N

k
· r(1 + r2)

|r2 − 2ηw| sin θ ,

Fθϕ = ω

√

2N

k
· r3 sin θ

|r2 − 2ηw| . (5.4)

9Since we take Kaluza-Klein reduction fixing the radius of y direction, the M2-brane tension T2 is equal

to the D2-brane tension T2 shown in (5.1).
10Here we use the identity written in [25]

−det(P [G]ij + 2πFij) = (−det P [G])(1 + 2π2F 2),

−det(P [G]ij + e2φtitj) = (−det P [G])(1 + e2φtit
i). (5.2)

11We used the relation R3

4k
= π

q

2N
k

in (2.11).

– 16 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
2

Note that if we set w = 0 and ω = 1
2 , then we correctly reproduce Ftθ = 0 and Fθϕ = M

2 sin θ

as discussed in section 3.2.

In the same way as the spinning dual giant, we have two different types of the world-

volume i.e. a sphere with two spikes (see figure 2) and a torus (see figure 3). The former case

with infinitely long spikes is naturally understood as a bound state of the D2 fuzzy sphere

and infinitely long fundamental strings. Since it has an infinite energy, it is not appropriate

for the candidate of ‘rotating fuzzy sphere’ raised in the introduction of this paper. Instead,

the fuzzy torus configuration will be a correct candidate as explained in figure 1.

The supersymmetry of these D2-D0-F1 bound states is the same as the analysis of

spinning dual giants in AdS4 × S7/Zk with k sufficiently large and is shown in table 2.

Finally we would like to note that it is possible to make one of two cycles of the torus

very small so that it looks like a ring assuming w is very large. By considering its back-

reacted geometry, this fuzzy ring solution might suggest an existence of supersymmetric

or non-supersymmetric black ring solutions in a certain AdS4 supergravity. However, the

topological censorship12 in AdS4 [26] tells us that the horizon topology should always be

S2 and not T 2. Therefore, it is probable that it becomes a small black ring instead of

a macroscopic one, by taking into account higher derivative corrections (see also [27] for

a discussion of (small) black rings in four dimension). It is also a very interesting future

problem to repeat a similar analysis for AdS5 ×S5 and see if we can realize a fuzzy ring. If

such an object exists, it might suggest supersymmetric black ring-like objects13 inAdS5. An

evidence for non-supersymmetric black ring solutions in AdS has been given recently in [29].

6. Dual giant gravitons in type IIA string on AdS4 × CP 3

Before we conclude this paper, we would like to mention spherical D2-branes wrapped on

S2 in AdS4 and orbiting the CP 3 as they are other interesting BPS states dual to super-

symmetric operators in the ABJM theory. They can be regarded as dual giant gravitons

in type IIA string on AdS4 ×CP 3. They are also obtained from the reduction of spherical

dual giants in AdS4 × S7/Zk.

We take the world-volume coordinates of D2-brane as

σ0 ≡ τ = t, σ1 = θ, σ2 = ϕ, (6.1)

and consider a trial solution of the form

ψ = ψ(τ), φ1 = φ1(τ), φ2 = φ2(τ), ζ, θ1, θ2, r = const. (6.2)

Then, the D2-brane action is written as

S = −2πT2 kR
2

∫

dt[r2∆1/2 − r3], (6.3)

12We are very grateful to Mukund Rangamani for bring us this reference and related discussions.
13Supersymmetric black rings in standard gauge supergravities such as the minimal gauged supergravity

have been investigated in [28] and it has been shown that they do not exist. However, in our case, the

presence of 3-form gauge potential in AdS4 (or 4-form potential in AdS5) is crucial for the existence of the

fuzzy ring. It might be possible for these extra fluxes change the situation. To see if this is true or not will

be an interesting future problem.
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where ∆ ≡ P [G]tt is given by (in the coordinate (2.11))

∆ = 1 + r2 − 4 cos2 ζ sin2 ζ

(

ψ̇ +
cos θ1

2
ϕ̇1 −

cos θ2
2

ϕ̇2

)2

− cos2 ζ sin2 θ1ϕ̇
2
1 − sin2 ζ sin2 θ2ϕ̇

2
2. (6.4)

Solving the above Lagrangian, we can obtain the spherical D2-brane solution. For simplic-

ity, we take ζ = π
4 , θ1 = θ2 = 0 and ϕ̇1 = ϕ̇2 = 0. In this case, the Lagrangian (6.3) becomes

L = −a
[

r2
√

1 + r2 − ψ̇2 − r3
]

, (6.5)

where we denote a = 2πT2 kR
2. The momentum conjugate to ψ is

Pψ =
ar2ψ̇

√

1 + r2 − ψ2
. (6.6)

Using this, the Hamiltonian becomes

H = Pψψ̇ − L = a





√

r2 + 1

√

r4 +
P 2
ψ

a2
− r3



 . (6.7)

Thus the solution satisfying ∂H/∂r = 0 is

r = 0, r2 =
P 2
ψ

a2
. (6.8)

The former is graviton and the latter is giant graviton solution. These have the equal

energy E = Pψ = 1
2(J1 +J2−J3−J4). Since they do not rotate in the y direction, the dual

operators will not have any baryon charge. Therefore they should be dual to be singlet

operators of the bi-fundamental matter fields such as the symmetric polynomials of (AiBj)

as in the case of AdS5 × S5 [30].

7. Conclusion

In this paper we presented an analytical description of spinning dual giant gravitons in

AdS4 × S7 and its orbifold. We showed that its world-volume in AdS4 looks like either a

torus or a sphere with two infinitely long spikes attached. We worked out the number of

supersymmetries which are preserved by this configuration.

We further reduced these M-theory BPS states to those in the type IIA string by

taking an orbifold. They are interpreted as spinning dielectric D2-branes. Even though

the world-volume of a non-rotating dielectric D2-branes is given by a sphere, its topology

should be changed into a torus when we rotate it. This fuzzy torus is a bound state of a

D2-brane, D0-branes and F-strings and is spinning due to the Poynting vector due to the

presence of both electric and magnetic gauge flux. If we imagine a dynamical process of

increasing angular momentum of a dielectric D2-brane, it is impossible for the topology
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change to occur instantly. Therefore, it will be intriguing to study the time-dependent

process of developing an empty tube inside the fuzzy sphere.

At the same time, our results offer new BPS objects in the AdS4 backgrounds dual

to the ABJM theory. It will be another interesting future direction to explore their dual

supersymmetric operators in detail.

We also find that for an appropriate choice of parameters, the fuzzy torus can degen-

erate into a fuzzy ring, which suggests the existence of (possibly small) supersymmetric

black rings in the AdS4 spacetime. It may also be interesting to see if we can construct

similar dual giant gravitons in AdS5 × S5.
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A. Killing spinors for AdS4 × S7

Here we will construct the Killing spinors preserved in the AdS4 × S7 background (2.1).

The vielbeins are given by

e0 =
R

2

√

1 + r2dt, e1 =
Rdr

2
√

1 + r2

l2

, e2 =
Rrdθ

2
,

e3 =
Rr sin θdφ

2
, e4 = Rdα, e5 = R cosαdβ,

e6 = R cosα cosβdγ, e7 = R sinαdξ1, e8 = R cosα sinβdξ2,

e9 = R cosα cosβ sin γdξ3, e10 = R cosα cos β cos γdξ4, (A.1)

and the spin connections defined as de· + ω·
ν ∧ eν = 0 becomes

ω0
1 = rdt, ω1

2 = −
√

1 + r2dθ, ω1
3 = −

√

1 + r2 sin θdφ,

ω2
3 = − cos θdφ, ω4

5 = sinαdβ, ω4
6 = sinα cosβdγ, ω5

6 = sinβdγ,

ω4
7 = − cosαdξ1, ω4

8 = sinα sin βdξ2, ω5
8 = − cos βdξ2,

ω4
9 = sinα cos β sin γdξ3, ω5

9 = sinβ sin γdξ3, ω6
9 = − cos γdξ3,

ω4
10 = sinα cos β cos γdξ4, ω5

10 = sinβ cos γdξ4, ω6
10 = sin γdξ4. (A.2)
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The supersymmetry transformation of the gravitino reads

δΨ· ≡ D·ǫ−
1

288
(Γνλρσ· − 8δν· Γλρσ)Fνλρσǫ, (A.3)

D·ψ ≡
(

∂· +
1

4
ωνρµ γνρ

)

ψ,

where ǫ and ψ are Majorana fermions. Bosonic configuration (Ψ· = 0) preserves the

supersymmetry when δΨ· = 0 is satisfied. Putting (A.2) into (A.3), the Killing spinor

equation can be calculated as follows:

AdS4

(

∂t +
r

2
γ01 +

1

2

√

1 + r2γ0γ̂

)

ǫ = 0,

(

∂r +
1

2

1√
1 + r2

γ1γ̂

)

ǫ = 0,

(

∂θ −
1

2

√

1 + r2γ12 +
r

2
γ2γ̂

)

ǫ = 0,

(

∂φ −
1

2

√

1 + r2 sin θγ13 −
1

2
cos θγ23 +

r sin θ

2
γ3γ̂

)

ǫ = 0, (A.4)

S7

(

∂α − 1

2
γ̂γ4

)

ǫ = 0,

(

∂β +
1

2
sinαγ45 −

1

2
cosαγ̂γ5

)

ǫ = 0,

(

∂γ +
1

2
(sinα cos βγ46 + sin βγ56) −

1

2
cosα cos βγ̂γ6

)

ǫ = 0,

(

∂ξ1 −
1

2
cosαγ47 −

1

2
sinαγ̂γ7

)

ǫ = 0,

(

∂ξ2 +
1

2
(sinα sin βγ48 − cos βγ58) −

1

2
cosα sin βγ̂γ8

)

ǫ = 0,

(

∂ξ3 +
1

2
(sinα cos β sin γγ49 + sin β sin γγ59 − cos γγ69) −

1

2
cosα cos β sin γγ̂γ9

)

ǫ = 0,

(

∂ξ4 +
1

2
(sinα cos β cos γγ410+sin β cos γγ510+sin γγ610)−

1

2
cosα cos β cos γγ̂γ10

)

ǫ = 0,

(A.5)

Solving these equations, we obtain the Killing spinor preserved by AdS4 × S7

ǫ = e
α
2
γ̂γ4e

β
2
γ̂γ5e

γ
2
γ̂γ6e

ξ1
2
γ47e

ξ2
2
γ58e

ξ3
2
γ69e

ξ4
2
γ̂γ10e−

ρ
2
γ1γ̂e−

t
2
γ0γ̂e

θ
2
γ12e

ϕ
2
γ23ǫ0, (A.6)

where ǫ0 is an arbitrary constant spinor, then we have 32 independent Killing spinors. That

is to say, there are 32 supersymmetry for AdS4 × S7 background.
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B. Useful identities

Below we present the useful gamma matrix identities used in section 4.2

.γ0M = Metγ0 γ̂γ0

γ1M = M(cosh x cos θγ1 + coshx sin θ cosϕγ2 + cosh x sin θ sinϕγ3 − sinhxetγ0 γ̂ γ̂)

γ2M = M(− sin θγ1 + cos θ cosϕγ2 + cos θ sinϕγ3)

γ3M = M(− sinϕγ2 + cosϕγ3)

γ7M = M(cosh xetγ0 γ̂ + sinhx cos θγ1γ̂ + sinhx sin θ cosϕγ2γ̂ + sinhx sin θ sinϕγ3γ̂)

· [− ·1 γ47γ̂ − ·2e−ξ1γ47e−ξ2γ58γ57γ̂ − ·3e−ξ1γ47e−ξ3γ69γ67γ̂ + ·4e−ξ1γ47e−ξ4γ10 γ̂γ7]

γ8M = M(cosh xetγ0 γ̂ + sinhx cos θγ1γ̂ + sinhx sin θ cosϕγ2γ̂ + sinhx sin θ sinϕγ3γ̂)

· [− ·1 e−ξ1γ47e−ξ2γ58γ48γ̂ − ·2γ58γ̂ − ·3e−ξ2γ58e−ξ3γ69γ68γ̂ + ·4e−ξ2γ58e−ξ4γ10 γ̂γ8]

γ9M = M(cosh xetγ0 γ̂ + sinhx cos θγ1γ̂ + sinhx sin θ cosϕγ2γ̂ + sinhx sin θ sinϕγ3γ̂)

· [− ·1 e−ξ1γ47e−ξ3γ69γ49γ̂ − ·2e−ξ2γ58e−ξ3γ69γ59γ̂ − ·3γ69γ̂ + ·4e−ξ3γ69e−ξ4γ10 γ̂γ9]

γ10M = M(cosh xetγ0 γ̂ + sinhx cos θγ1γ̂ + sinhx sin θ cosϕγ2γ̂ + sinhx sin θ sinϕγ3γ̂)

· [− ·1 e−ξ1γ47e−ξ4γ10γ̂γ410γ̂−·2e−ξ2γ58e−ξ4γ10 γ̂γ510γ̂−·3e−ξ3γ69e−ξ4γ10γ̂γ610γ̂+·4γ10]

γyM = M(cosh xetγ0 γ̂ + sinhx cos θγ1γ̂ + sinhx sin θ cosϕγ2γ̂ + sinhx sin θ sinϕγ3γ̂)

· [− ·1 ·2e−ξ1γ47e−ξ2γ58(γ48 + γ57)γ̂ − ·1 ·3 e−ξ1γ47e−ξ3γ69(γ49 + γ67)γ̂

+ ·1 ·4 e−ξ1γ47e−ξ4γ10γ̂(γ7 − γ410γ̂) − ·2 ·3 e−ξ2γ58e−ξ3γ69(γ68 + γ59)γ̂

+ ·2 ·4 e−ξ2γ58e−ξ4γ10γ̂(γ8 − γ510γ̂) + ·3 ·4 e−ξ3γ69e−ξ4γ10 γ̂(γ9 − γ610γ̂)

− (·21γ47 + ·22γ58 + ·23γ69 + ·24γ10γ̂)γ̂] (B.1)

etγ0 γ̂γ0e
tγ0γ̂ = γ0 (B.2)
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